首页> 外文OA文献 >RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers
【2h】

RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers

机译:N-(2-(甲基丙烯酰氧基)乙基)吡咯烷酮的RaFT水分散聚合:高分子量水溶性共聚物的方便低粘度路线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

RAFT solution polymerization of N-(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA63–PNMEPx diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in Mn with increasing PNMEP DP. A gradual increase in Mw/Mn was also observed when targeting higher DPs. However, this problem could be minimized (Mw/Mn < 1.50) by utilizing a higher purity grade of NMEP (98% vs 96%). This suggests that the broader molecular weight distributions observed at higher DPs are simply the result of a dimethacrylate impurity causing light branching, rather than an intrinsic side reaction such as chain transfer to polymer. Kinetic studies confirmed that the RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both 1H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA63–PNMEPx particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer in a rather convenient low-viscosity form. Finally, the relatively expensive PGMA macro-CTA was replaced with a poly(methacrylic acid) (PMAA) macro-CTA. High conversions were also achieved for PMAA85–PNMEPx diblock copolymers prepared via RAFT aqueous dispersion polymerization for x ≤ 4000. Again, better control was achieved when using the 98% purity NMEP monomer in such syntheses.
机译:N-(2-(甲基丙烯酰氧基)乙基)吡咯烷酮(NMEP)在乙醇中的RAFT溶液聚合在70°C下进行,以生产一系列PNMEP均聚物,平均聚合度(DP)为31至467。使用比浊法以评估其在稀水溶液中的逆温度溶解性行为,在高分子量限制下观察到的LCST约为55°C。然后,使用RAFT水性分散聚合配方在70°C下用NMEP对平均DP为63的聚(单甲基丙烯酸甘油酯)(PGMA)大分子CTA进行扩链。目标PNMEP DP的范围从100到6000,系统地变化,以生成一系列PGMA63-PNMEPx二嵌段共聚物。靶向x = 5000时,可以实现高转化率(≥92%)。GPC分析证实,随着PNMEP DP的增加,Mn的阻断效率高,并且Mn呈线性变化。当靶向更高的DP时,还观察到Mw / Mn的逐渐增加。但是,通过使用更高纯度的NMEP(98%对96%),可以最小化此问题(Mw / Mn <1.50)。这表明,在较高的DP下观察到的较宽的分子量分布仅是二甲基丙烯酸酯杂质引起轻度支化的结果,而不是固有的副反应,例如链转移至聚合物。动力学研究证实,在每种情况下,以相同的DP为目标时,NMEP的RAFT水分散体聚合速度比NMEP在乙醇中的RAFT溶液聚合速度快约四倍。这可能令人惊讶,因为1H NMR和SAXS研究均表明,在后一种配方中,形成核的PNMEP链在70°C时仍保持相对溶剂化。此外,当PNMEP块通过其LCST时,最初的PGMA63–PNMEPx颗粒会在从70℃冷却至20°C时发生溶解。因此,该RAFT水性分散聚合制剂提供了以相当方便的低粘度形式制备高分子量水溶性聚合物的有效途径。最后,将相对昂贵的PGMA宏CTA替换为聚(甲基丙烯酸)(PMAA)宏CTA。通过RAFT水分散聚合制备的xx≤4000的PMAA85-PNMEPx二嵌段共聚物也实现了高转化率。同样,当在这种合成中使用98%纯度的NMEP单体时,可以实现更好的控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号